
CompHD: Efficient Hyperdimensional Computing
Using Model Compression

Justin Morris, Mohsen Imani, Samuel Bosch, Anthony Thomas, Helen Shu, Tajana Rosing

Abstract—Hyperdimensional (HD) computing is a mathemat-
ical framework, inspired by neuroscience, which can be used to
represent many machine learning (ML) problems. Data is first
encoded into high dimensional space (on the order of 103 or
104 dimensions) to create hypervectors. HD computing combines
these hypervectors to create a model used for inference. However,
due to the high dimensionality of the hypervectors, inference
in HD is very expensive, especially when it runs on embedded
devices with limited resources. One naive approach to improve
the efficiency of HD computing is to simply lower the dimen-
sionality of hypervectors, which comes with a corresponding loss
in accuracy. However, if the data is compressed intelligently, we
can reduce the dimensionality of an HD model without sacrificing
accuracy. To that end, we propose CompHD, a novel approach
for compressing HD models while maintaining the accuracy of
the original model. CompHD utilizes the mathematics of high-
dimensional spaces to compress hypervectors into shorter vectors
while maintaining the information of full length hypervectors. We
evaluated the efficiency of CompHD on a variety of applications.
Our results show that CompHD can reduce model size by an
average of 69.7%, resulting in a execution time speed up of 4.1×
and improving energy efficiency by 74% while maintaining the
accuracy of the original model. This enables more low powered
IoT devices to utilize HD computing for ML problems.

I. INTRODUCTION

The emergence of the Internet of Things (IoT) has cre-

ated an abundance of small embedded devices [1]. Many

of these devices are used for cognitive tasks such as: face

detection, speech recognition, image classification, activity

recognition, etc. These devices want to run learning algorithms

such as: deep Neural Networks (DNNs), (AlexNet [2], and

GoogleNet [3] that provide excellent accuracy for cognitive

tasks. However, these embedded devices have limited re-

sources, such as limited battery power or limited memory

[4]. Therefore, these devices are unable to run these resource

intensive algorithms. To get around the resource limitation on

embedded devices, many of them send the data they collect to

a cloud server, which performs the resource intensive cognitive

tasks. However, this is not desirable for many users due to

security and network communication costs [5]. Thus, we need

more efficient light-weight classifiers to perform cognitive

tasks on embedded systems.

Brain-inspired Hyperdimensional (HD) computing has been

proposed as a light-weight classifier to perform cognitive

tasks on resource limited systems. Inspired by research from

neuroscience, HD computing represents data as points in a

high dimensional space. Past research utilized high dimension

vectors (D ≥ 1,000), called hypervectors (HV), to represent

neural activity in the brain. Prior work found that HD is

able to provide high accuracy results for many cognitive

tasks at a much lower computational cost than other learn-

ing algorithms [6], [7], [8], [9]. Work in [10] proposed a

general encoding module that maps feature vectors into high-

dimensional space while keeping most of the original data.

Prior work also tried to design hardware acceleration for

HD computing by mapping its operations into hardware, e.g.,

FPGA [11], [12], [13], [14], and tried to accelerate HD com-

puting in hardware by binarizing the class hypervectors [15] or

removing dimensions of the class hypervectors [16]. However,

removing dimensions and binarizing the HD model causes

accuracy loss because information captured by the HD model

is removed. To achieve the best accuracy, HD computing needs

to be trained with an integer model, but when using (D =

1,000) HVs to create and train the HD model, HD computing

can still be too resource intensive for embedded systems.

Model size in HD computing is important because it in-

creases the information storage capabilities of the model,

resulting in better distinction between classes. However, with

larger model sizes, there is a corresponding increase in com-

putational costs. For example, when an HD model has D
dimensionality and k classes, every query request costs k ∗D
additions and multiplications. To achieve acceptable accuracy,

HD models typically use very high dimensionality. This is

costly for embedded devices with limited resources. Inference

requests take too long to calculate and additionally, the HD

model may not fit into the main memory of embedded devices.

In this paper, we propose a robust and efficient solution

to the computational complexity and spacial constraints of

HD computing while maintaining comparable accuracy. Prior

work reduced computation by simply lowering the dimension-

ality [7]. However, this approach leads to data loss in HD

computing as the information in the dropped dimensions is

no longer kept in the model. Our proposed HD computing

framework, called CompHD, utilizes the mathematics of high

dimensional spaces to reduce the size of the HD model and

thus reduces the number of computations at inference time.

CompHD splits up each class HV into s separate components

and combines them into a reduced d << D dimensional

model. This method reduces the model size and number of

computations by a factor of s while maintaining comparable

accuracy to the original HD model. Using an empirical eval-

uation on several real world datasets, we show that CompHD
can reduce the model size by an average of 69.7%, improve

efficiency by 74%, and speed up execution time by 4.1×, while

maintaining the accuracy of the original model. Our results

show that CompHD enables more low powered IoT devices

to solve ML problems with HD computing.



TABLE I
EFFECT OF REDUCING DIMENSIONALITY ON ACCURACY AND EXECUTION

TIME

Accuracy Testing Time
Dimension (D) 1000 250 100 1000 250 100

Activity Recognition 100% 5.3% 5.2% 49.4μ s 17.78μ s 9.88μ s
Valve Monitoring 100% 83.7% 51.0% 10.4μ s 3.74μ s 2.08μ s

Gesture Recognition 91.1% 84.4% 62.9% 13.0μ s 4.68μ s 2.6μ s

II. HIGH-DIMENSIONAL COMPUTING

Hyperdimensional computing is a computing paradigm in-

volving long vectors with dimensionality in the thousands,

called hypervectors [17]. There are several nearly orthogonal

HVs in high-dimensional space [18]. HD combines these HVs

with well-defined vector operations, while preserving most of

the information from each individual HV. No one dimension in

a HV has more responsibility to store any piece of information

than any other component because HVs are holographic and

(pseudo) random with i.i.d. components and a full holistic

representation. The mathematics of high-dimensional space

enable HD to be easily applied to different learning problems.

Figure 1 shows an overview of the structure of an HD

model. HD computing consists of an encoder and a classifier.

The encoder maps input data into hypervectors. The HVs are

then combined to create one class HV to represent each class

and stored in the classifier. The classifier uses the cosine

similarity of any input HV with all of the class HVs to

determine the output class. The class with the highest cosine

similarity is selected as the output class.

A. Encoding

CompHD is a general framework that can be used to com-

press an HD model for any classification task. In IoT systems,

devices usually get data from sensor nodes, which produce

time-series data. Here we explain CompHD functionality in

the context of time-series classification. We use an encoder

designed for time series signals [19] to encode feature vectors

into high-dimensional space. Our encoding first quantizes the

feature values into m levels and assign a ”level hypervector” L
to each. The following equations show how the Ls are used

to encode a n length time series signal to generate the jth

training data HV in the ith class where N is the length of the

N-gram window, Gk is an intermediate HV that is calculated

for each N-gram step and ρx is defined as a rotational shift to

the right by x:

Gk = [ρ0(L1) + ρ1(L2) + . . . + ρN−1(LN )]

Hj
i = [G1 + G2 + . . . + Gn−N ]

B. Training

HD computing supports efficient one-pass training. To

build a one-pass model, the encoder maps all training data

to training HVs (H). For all training HVs within a class

Similarity check

Training Data

Training Data 
@ Class k

Training Data 
@ Class 2

Training Data 
@ Class 1 Encoding

Query

Class 1 (C1)

Class 2 (C2)

Class k (Ck) 

In
fe

re
nc

e

Encoding

Encoding

Encoding

Associative Memory

D
is

ta
nc

e 
Si

m
ila

ri
ty

Tr
ai

ni
ng

Training
Module

Inference 
Data

Fig. 1. Overview of creating an HD model and performing inference with
an HD model

({H1
i , H2

i , . . . ,Hj
i}), HD computing adds them together to

create a single class HV (Ci).

Ci = H1
i + H2

i + . . . + Hj
i

Once this is done for every class, we have an HD model

that can be used for inference. By creating a model in one pass

through the training dataset, HD computing uses significantly

less energy than other learning algorithms that need to take

multiple passes over the training dataset to train a model. After

training, all class HVs are stored in the classifier.

C. Associative Search

Upon inference, the encoder first maps the input data into

a query HV (Q), using the same encoding that was used to

train the HD model. A similarity metric is used to determine

the strength of a match between the query HV and each class

HV. The most common metric used in HD computing is cosine

similarity, but note that other metrics (e.g. Hamming distance)

could be appropriate for other types of problems. After the

cosine similarity is computed between the query HV and each

class HV in the classifier, the class with the highest cosine

similarity is chosen as the output class.

D. Challenges

There are challenges when running HD computing on

embedded devices with limited resources. Storing HVs in

D = 1, 000 dimensions may require more resources than

these devices have. Additionally, k ∗ D multiplications and

additions need to be performed upon inference on a model

with k classes and D = 1, 000 dimension. This is costly for

embedded devices with limited resources.

One solution is to reduce the dimensionality of the HD

model. This method is effective at reducing the model size as

well as the number of operations for inference [7]. However,

as Table I shows, lowering dimensionality results in a trade

off between accuracy and efficiency. As the dimensionality

reduces, efficiency increases, i.e., faster and more energy-

efficient computation, at the cost of accuracy. For example,

when D is reduced from 1,000 to 250, on average, there

is a 2.78× speed up at the cost of 39.23% of classification



× × 
+1

× × 
+1

1st Segment

cjscjd

P1 Ps-1 +1

cjD

c'11c'1d

 

c1D c11c1d

sth Segment

× × 
+1

× × 
+1

1st Segment

P1 Ps-1 +1

 

sth Segment

hD hd h1

hd h1

c'j1c'jd

Compressed 
Model

Compressed 
Query

(a) Offline (After Training) (b) Online (During Inference)

hD hd h1

c1D-d

cjD-d hD-d

hD-d

Fig. 2. CompHD compression of (a) an HD model and (b) a query data.

(a) s = 4 (b) s = 10

Fig. 3. Histogram of the distributions of the dot products of matching terms
(data) and mismaching terms (noise)

accuracy. Therefore, simply reducing dimensionality does not

provide acceleration without the cost of losing accuracy. Our

goal is to design a framework which enables dimension

reduction in HD computing with no or minimal impact on

the classification accuracy.

III. MODEL COMPRESSION

Here we present our novel approach to accelerate HD

computing by reducing the dimensionality. CompHD exploits

the mathematics of high-dimensional spaces in order to reduce

the effective dimensionality of the trained HD model while

providing minimal loss in accuracy. Instead of using vectors

with D = 1, 000 dimensionality representing each class HV,

CompHD compresses each class HV to d dimensionality

where d << D. CompHD splits the trained class HVs into

s equal segments, where each piece has d = D/s dimensions.

We then combine all s segments of each class HV to create a

new HV in d dimensions. Combining these segments needs to

preserve the information of each individual partition, otherwise

CompHD would lose classification accuracy.

A. Compression

Each class HV is split into s equal segments with d = D/s
dimensionality, Ci = {C1

i , C2
i , . . . , Cs

i }, where Cj
i is the jth

piece of the ith class HV. CompHD could generate a d
dimension class HV by just adding these segments together.

However, this approach does not keep the positional informa-

tion of each individual piece, which is important since HD

works based on the pattern of similarity in high dimensional

space. Thus, it is crucial to know the pattern of each individual

partition.

To preserve the positional information, CompHD generates

a set of HVs, {P1,P2, ...,Ps}, where Pi ∈ {−1, 1}D. These

HVs are generated semi-randomly with the Hadamard method

[20] to ensure that they are mutually orthogonal. We do this by

generating a d× d sized Hadamard matrix, which is a matrix

with elements of +1 and −1 where each row is mutually

orthogonal to every other row. We only require the use of

the first s rows to use as our set of HVs, P , because we

only need one P for each segment. Using these HVs, we can

uniquely store the information of each partition in a combined

HV. We compress the class HVs by multiplying each segment

of the class HV by a unique P and then adding each result up

to create the compressed HV. The following equation shows

how this compression is calculated:

C′ =
s∑

i=1

PiCi

Figure 2 (a) shows how CompHD creates a compressed

HD model using trained class HVs and a set of Ps. This

approach reduces the HD model dimension from D to d, where

d << D.

B. Inference

To match the dimensionality of the HD model, the query

hypervector is compressed using the same procedure as used

for the class HVs.

Q′ =
s∑

i=1

PiQi

Figure 2 (b) shows how CompHD compresses the query

HV during inference. In testing, HD computing checks the

similarity of the query HV with each compressed class HVs by

calculating the cosine similarity: (C · Q)/(‖C‖ ‖Q‖). Cosine

similarity can be simplified to just calculating the dot product

plus a division by storing the length of the class hypervectors.

The division by the length of the query hypervector can be

dropped because it simply scales the result and does not

change which class will be selected. Using the non-compressed

model, HD can perform the dot product between the query and

class HV in D dimensions.

δ =
C · Q
‖C‖

This operation is very costly for D = 1, 000 because it

takes D multiplications and additions. After compressing the

model to d = D/s dimensionality, calculating the dot product

can be done in d dimensions. Thus, the compressed model

gains an approximate speed up of s over the full model upon

inference. The speedup is approximately s because the query

HV needs to be compressed as well before calculating the

cosine similarity with the compressed model.



Once the query HV is compressed, CompHD selects the

class with the highest cosine similarity to the compressed

query HV, which is calculated using:

argmaxi=1:k{δ〈Q′, C′
i〉}

To maintain the accuracy of the full sized HD model,

the dot product between the compressed class HV (C ′
i) and

compressed query HV (Q′) needs to be as close to the dot

product of the full sized class HV (Ci) and full sized query HV

(Q). When the dot product of the compressed model is foiled

out, the terms of the resulting dot product of the compressed

model can be split up into two parts, noise and data. Noise

occurs when a term has mismatching Ps and data occurs when

a term has matching Ps.

Q′ · C′
i = (

s∑
i=1

PiCi) · (
s∑

j=1

PjQj)

Q′ · C′
i =

∑
i=j

PiCiPiQi

︸ ︷︷ ︸
data

+
∑
i �=j

PiCiPjQj

︸ ︷︷ ︸
noise

If we only kept the terms with matching Ps, the resulting dot

product would be equal to the dot product of the full sized

model. Therefore, to achieve the same results as the full sized

model our design needs to minimize the noisy terms.

CompHD achieves this by ensuring that every P is mu-

tually orthogonal to each other by generating them with the

Hadamard method. Therefore, when two different Ps are in

the same term, their inner product is approximately zero and

the resulting dot product is minimized. Thus, resulting in the

dot products of the compressed model being approximately

equal to the dot products of the full sized model. Figure 3

shows the distributions of the dot products of data terms and

the dot products of noisy terms for the Valve Monitoring

dataset with s = 4 and s = 10. It is clear that data terms are

contributing to the resulting dot product significantly more

than noisy terms. Therefore, the error introduced by noisy

terms does not have much impact on the resulting dot product.

This leaves the dot product between C ′
i and Q′ with the the

terms where there are matching Ps, because all other terms

are minuscule in comparison:

C′ · Q′ ≈
∑
i=j

PiCiPiQi

This is the desired result because the dot product in the

compressed model is approximately equal to the dot product

of the full sized model, thus reducing the error introduced

when compressing the model. Additionally, we can see in

figure 3 when the compression factor increases, the distance

between noisy terms and data terms is reduced, resulting in

a less accurate model. CompHD uses this information about

the ratio of noisy data to real data to selectively pick the

best compression factor to use that gives comparable accuracy

to the full sized model with a significant improvement on

efficiency.

2 4 10 20
Compression Factor

100

101

102

103

S
ig

n
al

/N
o

is
e 

R
at

io

Activity Recognition
Valve Monitoring
Gesture Recognition

Fig. 4. Ratio of real data to noisy data for different values of effective
dimension

IV. EVALUATION

A. Experimental Setup

We implemented CompHD training and inference in

both software and hardware. In software, we implemented

CompHD using C++ code. We also implemented CompHD
on two embedded devices: a Raspberry Pi 3 using ARM

Cortex A53 CPU and a Kintex-7 FPGA. For the FPGA, we

implemented CompHD using Verilog. We verify the timing

and the functionality of the models by synthesizing them using

the Xilinx Vivado Design Suite [21]. The synthesis code has

been implemented on the Kintex-7 FPGA KC705 Evaluation

Kit.

We test the efficiency of the proposed approach on three

practical applications:

Activity Recognition [22]: Using motion sensor data from 5

sensor units with each unit containing 9 sensors, the objective

is to recognize the activity performed. The training and testing

datasets are taken from the Daily Sports and Activities dataset.

This dataset consists of 8 subjects performing 19 different

activities in their own style for a 5 minute duration. All of the

sensors record data at 25Hz during the 5 minute interval and

each 5 minute interval is then divided into 5 second intervals

to create 60 separate data samples each containing 5,625 data

points.

Valve Monitoring [23] The goal of this task is to determine if

the condition of the valves in a hydraulic system are optimal,

have a small lag, have sever lag, or are failing. The training

and testing datasets are taken from the Condition Monitoring

of Hydraulic Systems dataset. This dataset consists of 2205

samples of sensor data from a hydraulic system. Each sample

has the data from 17 separate sensors over a duration of 60

seconds totaling 43,680 data points per sample.

Gesture Recognition [24]: Here we try to recognize five

different hand gestures: rested hand, closed hand, open hand,

2-finger pinch, and point index. The gestures were sampled

at 500Hz with the use of an elastic band containing four

EMG sensors. We used the data collected from five different

subjects. The data was collected by each subject performing

10 repetitions of each gesture for three seconds each with a

three second resting period in between. Therefore, each sample

contains 6,000 data points.



1 2 4 10 20
Compression Factor

0

2

4

6

8

E
n

er
g

y 
C

o
n

su
m

p
. (

J)

(a)

1 2 4 10 20
Compression Factor

1

1

2

3

4

5

E
xe

cu
ti

o
n

 T
im

e 
 (

s)

(b)

1 2 4 10 20
Compression Factor

0

20

40

60

80

M
o

d
el

 S
iz

e 
(K

B
)

(c)

Fig. 5. Energy consumption, execution time, and model size of CompHD using different compression factors.

TABLE II
COMPARING THE EFFECT OF REDUCING MODEL SIZE WITH CompHD AND

DIMENSION REDUCTION ON ACCURACY

Dataset Activity Recognition Valve Monitoring Gesture Recognition

Effective D s Baseline CompHD Baseline CompHD Baseline CompHD

1,000 1 100% 100% 100% 100% 91.04% 91.04%
500 2 100% 100% 100% 100% 88.33% 90.66%
100 10 5.26% 100% 51.02% 100% 62.88% 91.17%
50 20 5.26% 100% 50.32% 100% 39.01% 89.94%
25 40 5.26% 57.89% 51.02% 83.67% 26.85% 86.69%

B. CompHD & Compression Factor

Figure 4 shows the ratios of real data in the dot product of

the compressed model to the noisy data in the dot product of

the compressed model. The graphs show that when increasing

the compression factor, the ratio of real data to noisy data

decreases. This is because as the compression factor increases,

the amount of real terms in the dot product linearly increases.

Meanwhile, the amount of noisy terms quadraticly increases.

Therefore, even though the noisy terms are much smaller

than the real data terms, as the compression factor increases,

the amount of noisy terms grows faster than the amount of

real data terms, bringing down the ratio. This results in a

decrease in accuracy as the compression factor increases too

far. CompHD chooses a compression factor such that the ratio

of real data to noisy data in the dot product is sufficiently high

to maintain a comparable accuracy to the full sized model

and the compression factor is large enough to improve on

efficiency over the full sized model. Based on our results, a

data ratio of 5 or higher is enough to ensure a comparable

accuracy to the full sized model. As figure 4 shows, CompHD
chose a compression factor of s = 20 for all three datasets.

C. CompHD Accuracy

Table II compares the classification accuracy of CompHD
with the classification accuracy of the baseline method di-

mension reduction as the model size decreases. The data

shows that when reducing the length of the hypervectors with

dimension reduction, there is a significant trade off between

model size and classification accuracy. For example, on the

Valve Monitoring dataset, when dimension reduction reduces

the length of the hypervectors by 90%, the model loses

48.98% accuracy. As the dimensionality is reduced further

with dimension reduction, more accuracy loss is observed.

CompHD reduces this trade off by a significant amount by

compressing the full sized model rather than simply reducing

the dimensionality.

CompHD is able to reduce the model size while main-

taining a comparable accuracy to a full sized model. For

instance, when reducing the length of the hypervectors by

95% with CompHD, the model maintains the same accuracy

as the original model for the Valve Monitoring dataset. On

average, CompHD loses 65.33% less accuracy than dimension

reduction while reducing the length of the hypervectors by

95%. Although, there is a point where CompHD loses more

accuracy than desired for each dataset. For example, with the

Gesture Recognition dataset, when s = 40 the accuracy drops

by 4.35% from the original model. However, CompHD is still

27.21% more accurate than dimension reduction. This shows

that CompHD is capable of maintaining the accuracy of the

original model while reducing the model size up to a break

point. Additionally, CompHD is strictly better than dimension

reduction at reducing model size because CompHD never loses

as much accuracy as dimension reduction for the same model

size reduction. Our evaluation shows that CompHD is a robust

way to reduce model size while maintaining a comparable

accuracy to the original model.

D. CompHD Efficiency

Figure 5 compares the energy consumption, execution time,

and model size of CompHD using different compression

factors. The baseline is also represented in the graphs, as

a compression factor of 1 is the baseline. The data shows

that CompHD improves the energy consumption, execution

time, and model size of HD computing as the compression

factor increases. All results are reported when applications

are running on a Kintex-7 FPGA. As stated before, the

improvement is closely linear with respect to the compression

factor. For example, when s = 10 for the Activity Recognition

dataset, CompHD uses 8.09× less energy than the baseline and

gains a speed up of 4.47×. However, because of the overheads

of our design, it is not completely linear. The overheads of our

design come from the need to compress hypervectors from the

original high-dimensional model. Compressing the query HV

may seem expensive, however, due to Ps ∈ {−1, 1}D, the

multiplications with the class HV segments can be reduced

to deciding if the subsequent operation when combining the

segments will be addition or subtraction. The graph of energy

consumption shows the additional energy needed by CompHD



TABLE III
EFFICIENCY IMPROVEMENT AND SPEEDUP OF CompHD OVER DIMENSION

REDUCTION FOR THE SAME ACCURACY.

Dataset Activity Recognition Valve Monitoring Gesture Recognition

Energy Improv. 85% 66.25% 71%
Speedup 5.31× 3.35× 3.7×

to compress the query hypervector. Additionally, the graph of

execution time shows the additional time needed to compress

the query hypervector. Lastly, the graph showing the model

size of CompHD shows how much additional space is need

for the Ps that are needed to compress the query hypervector.

Despite these overheads, the graphs in figure 5 show that

CompHD still improves the energy consumption, execution

time, and model size of HD computing nearly linearly with

respect to the compression factor.

E. Efficiency Considering Quality

Table III compares the efficiency of CompHD with dimen-

sion reduction when they provide the same accuracy. The

dimension reduction design and CompHD are compared by

implementing them on the Kintex-7 FPGA KC705 Evaluation

Kit. The data highlights the improvement that CompHD has

over dimension reduction at the same accuracy. CompHD is

able to provide the same accuracy as dimension reduction

while saving more energy. This is because dimension reduction

improves the efficiency of the HD model by just lowering the

dimensionality. This reduces the amount of information that

can be stored in the HD model, causing a significant loss of

accuracy. CompHD reduces this trade off by compressing the

model instead of just lowering the dimensionality. Compress-

ing the HD model saves important information in the larger

model needed to keep the accuracy high. This allows CompHD
to decrease the model size further than dimension reduction

while providing the same accuracy. Even though CompHD is

less efficient than dimension reduction at the same effective

dimension due to the need of compressing the query HV,

by preserving the information of the larger model, CompHD
is able to reduce the dimensionality even further. Overall,

CompHD is able to speed up execution time by an average

of 4.1× and improve efficiency by an average of 74% more

than dimension reduction while providing the same accuracy.

V. CONCLUSION

In this paper, we proposed a new method to reduce the

size of HD models without a trade-off of accuracy. CompHD
achieves this by dividing the class HVs into s segments and

combining those segments together with well defined vector

operations that reduce the amount of information lost. Once

combined, the new class HVs have dimensionality d = D/s.

This speeds up inference by approximately s times and reduces

the model size by approximately s times. This enables HD to

be run on a wider range of embedded devices with limited

resources. CompHD can reduce model size by an average of

69.7%, resulting in a execution time speeding up by 4.1× and

improving energy efficiency by 74% while maintaining the

same accuracy of the original model. Our results show that

CompHD enables more low powered IoT devices to solve ML

problems with HD computing.

ACKNOWLEDGEMENTS

This work was partially supported by CRISP, one of six

centers in JUMP, an SRC program sponsored by DARPA, and

also NSF grants #1730158 and #1527034.

REFERENCES

[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things (iot): A

vision, architectural elements, and future directions,” Future generation computer
systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep con-

volutional neural networks,” in Advances in neural information processing systems,

pp. 1097–1105, 2012.

[3] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-

houcke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.

[4] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino, A. Iamnitchi,

M. Barcellos, P. Felber, and E. Riviere, “Edge-centric computing: Vision and chal-

lenges,” ACM SIGCOMM Computer Communication Review, vol. 45, no. 5, pp. 37–

42, 2015.

[5] M. Satyanarayanan, “The emergence of edge computing,” Computer, vol. 50, no. 1,

pp. 30–39, 2017.

[6] O. Rasanen and J. Saarinen, “Sequence prediction with sparse distributed hyper-

dimensional coding applied to the analysis of mobile phone use patterns,” IEEE
Transactions on Neural Networks and Learning Systems, vol. PP, no. 99, pp. 1–12,

2015.

[7] M. Imani, C. Huang, D. Kong, and T. Rosing, “Hierarchical hyperdimensional

computing for energy efficient classification,” in Proceedings of the 55th Annual
Design Automation Conference, p. 108, ACM, 2018.

[8] M. Imani et al., “Hdcluster: An accurate clustering using brain-inspired high-

dimensional computing,” in DATE, IEEE/ACM, 2019.

[9] M. Imani et al., “A framework for collaborative learning in secure high-dimensional

space,” in IEEE CLOUD, pp. 1–6, IEEE, 2019.

[10] M. Imani, D. Kong, A. Rahimi, and T. Rosing, “Voicehd: Hyperdimensional com-

puting for efficient speech recognition,” in International Conference on Rebooting
Computing (ICRC), pp. 1–6, IEEE, 2017.

[11] M. Imani, A. Rahimi, D. Kong, T. Rosing, and J. M. Rabaey, “Exploring hyperdimen-

sional associative memory,” in High Performance Computer Architecture (HPCA),
2017 IEEE International Symposium on, pp. 445–456, IEEE, 2017.

[12] M. Imani et al., “Fach: Fpga-based acceleration of hyperdimensional computing by

reducing computational complexity,” in ASPDAC, pp. 493–498, ACM, 2019.

[13] S. Salamat et al., “F5-hd: Fast flexible fpga-based framework for refreshing hyperdi-

mensional computing,” in FPGA, pp. 53–62, ACM, 2019.

[14] S. Gupta et al., “Felix: fast and energy-efficient logic in memory,” in ICCAD, p. 55,

ACM, 2018.

[15] M. Imani et al., “A binary learning framework for hyperdimensional computing,” in

DATE, IEEE/ACM, 2019.

[16] M. Imani et al., “Sparsehd: Algorithm-hardware co-optimization for efficient high-

dimensional computing,” in IEEE FCCM, pp. 1–6, IEEE, 2019.

[17] P. Kanerva, “Hyperdimensional computing: An introduction to computing in dis-

tributed representation with high-dimensional random vectors,” Cognitive Compu-
tation, vol. 1, no. 2, pp. 139–159, 2009.

[18] P. Kanerva, “Encoding structure in boolean space,” in ICANN 98, pp. 387–392,

Springer, 1998.

[19] A. Rahimi, P. Kanerva, J. d. R. Millán, and J. M. Rabaey, “Hyperdimensional com-

puting for noninvasive brain-computer interfaces: Blind and one-shot classification of

eeg error-related potentials,” in 10th EAI Int. Conf. on Bio-inspired Information and
Communications Technologies, 2017.

[20] “Hadamard matrix.” https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/

scipy.linalg.hadamard.html.

[21] T. Feist, “Vivado design suite,” White Paper, vol. 5, 2012.

[22] “Uci machine learning repository.” https://archive.ics.uci.edu/ml/datasets/Daily+

and+Sports+Activities.

[23] “Uci machine learning repository.” https://archive.ics.uci.edu/ml/datasets/Condition+

monitoring+of+hydraulic+systems.

[24] S. Benatti, E. Farella, E. Gruppioni, and L. Benini, “Analysis of robust implementa-

tion of an emg pattern recognition based control.,” in BIOSIGNALS, pp. 45–54, 2014.


